222 research outputs found

    Electromagnetic form factor via Minkowski and Euclidean Bethe-Salpeter amplitudes

    Full text link
    The electromagnetic form factors calculated through Euclidean Bethe-Salpeter amplitude and through the light-front wave function are compared with the one found using the Bethe-Salpeter amplitude in Minkowski space. The form factor expressed through the Euclidean Bethe-Salpeter amplitude (both within and without static approximation) considerably differs from the Minkowski one, whereas form factor found in the light-front approach is almost indistinguishable from it.Comment: 3 pages, 2 figures. Contribution to the proceedings of the 20th International Conference on Few-Body Problems in Physics (FB20), Pisa, Italy, September 10-14, 2007. To be published in "Few-Body Systems

    The Mass Function of Newly Formed Stars (Review)

    Full text link
    The topic of the stellar "original mass function" has a nearly 50 year history,dating to the publication in 1955 of Salpeter's seminal paper. In this review I discuss the many more recent results that have emerged on the initial mass function (IMF), as it is now called, from studies over the last decade of resolved populations in star forming regions and young open clusters.Comment: 9 pages, 1 figure; to appear in "The Dense Instellar Medium in Galaxies -- 4'th Cologne-Bonn-Zermatt-Symposium" editted by S. Pfalzner, C. Kramer, C. Straubmeier and A. Heithausen, Springer-Verlag (2004

    A Substantial Population of Low Mass Stars in Luminous Elliptical Galaxies

    Full text link
    The stellar initial mass function (IMF) describes the mass distribution of stars at the time of their formation and is of fundamental importance for many areas of astrophysics. The IMF is reasonably well constrained in the disk of the Milky Way but we have very little direct information on the form of the IMF in other galaxies and at earlier cosmic epochs. Here we investigate the stellar mass function in elliptical galaxies by measuring the strength of the Na I doublet and the Wing-Ford molecular FeH band in their spectra. These lines are strong in stars with masses <0.3 Msun and weak or absent in all other types of stars. We unambiguously detect both signatures, consistent with previous studies that were based on data of lower signal-to-noise ratio. The direct detection of the light of low mass stars implies that they are very abundant in elliptical galaxies, making up >80% of the total number of stars and contributing >60% of the total stellar mass. We infer that the IMF in massive star-forming galaxies in the early Universe produced many more low mass stars than the IMF in the Milky Way disk, and was probably slightly steeper than the Salpeter form in the mass range 0.1 - 1 Msun.Comment: To appear in Natur

    The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared

    Full text link
    Quasars are thought to be powered by supermassive black holes accreting surrounding gas. Central to this picture is a putative accretion disk which is believed to be the source of the majority of the radiative output. It is well known, however, that the most extensively studied disk model -- an optically thick disk which is heated locally by the dissipation of gravitational binding energy -- is apparently contradicted by observations in a few major respects. In particular, the model predicts a specific blue spectral shape asymptotically from the visible to the near-infrared, but this is not generally seen in the visible wavelength region where the disk spectrum is observable. A crucial difficulty was that, toward the infrared, the disk spectrum starts to be hidden under strong hot dust emission from much larger but hitherto unresolved scales, and thus has essentially been impossible to observe. Here we report observations of polarized light interior to the dust-emiting region that enable us to uncover this near-infrared disk spectrum in several quasars. The revealed spectra show that the near-infrared disk spectrum is indeed as blue as predicted. This indicates that, at least for the outer near-infrared-emitting radii, the standard picture of the locally heated disk is approximately correct. The model problems at shorter wavelengths should then be directed toward a better understanding of the inner parts of the revealed disk. The newly uncovered disk emission at large radii, with more future measurements, will also shed totally new light on the unanswered critical question of how and where the disk ends.Comment: published in Nature, 24 July 2008 issue. Supplementary Information can be found at http://www.mpifr-bonn.mpg.de/div/ir-interferometry/suppl_info.pdf Published version can be accessed from http://www.nature.com/nature/journal/v454/n7203/pdf/nature07114.pd

    Type IIn supernovae at z ~ 2 from archival data

    Full text link
    Supernovae have been confirmed to redshift z ~ 1.7 for type Ia (thermonuclear detonation of a white dwarf) and to z ~ 0.7 for type II (collapse of the core of the star). The subclass type IIn supernovae are luminous core-collapse explosions of massive stars and, unlike other types, are very bright in the ultraviolet, which should enable them to be found optically at redshifts z ~ 2 and higher. In addition, the interaction of the ejecta with circumstellar material creates strong, long-lived emission lines that allow spectroscopic confirmation of many events of this type at z ~ 2 for 3 - 5 years after explosion. Here we report three spectroscopically confirmed type IIn supernovae, at redshifts z = 0.808, 2.013 and 2.357, detected in archival data using a method designed to exploit these properties at z ~ 2. Type IIn supernovae directly probe the formation of massive stars at high redshift. The number found to date is consistent with the expectations of a locally measured stellar initial mass function, but not with an evolving initial mass function proposed to explain independent observations at low and high redshift.Comment: 8 pages, 2 figures, includes supplementary informatio

    Black Hole Models of Quasars

    Get PDF
    Observations of active galactic nuclei are interpreted in terms of a theoretical model involving accretion onto a massive black hole. Optical quasars and Seyfert galaxies are associated with holes accreting near the Eddington rate and radio galaxies with sub-critical accretion. It is argued that magnetic fields are largely responsible for extracting energy and angular momentum from black holes and disks. Recent studies of electron-positron pair plasmas and their possible role in establishing the emergent X-ray spectrum are reviewed. The main evolutionary properties of active galactic nuclei can be interpreted in terms of a simple model in which black holes accrete gas at a rate dictated by the rate of gas supply which decreases with cosmic time. It may be worth searching for eclipsing binary black holes in lower power Seyferts

    The effects of supernovae on the dynamical evolution of binary stars and star clusters

    Full text link
    In this chapter I review the effects of supernovae explosions on the dynamical evolution of (1) binary stars and (2) star clusters. (1) Supernovae in binaries can drastically alter the orbit of the system, sometimes disrupting it entirely, and are thought to be partially responsible for `runaway' massive stars - stars in the Galaxy with large peculiar velocities. The ejection of the lower-mass secondary component of a binary occurs often in the event of the more massive primary star exploding as a supernova. The orbital properties of binaries that contain massive stars mean that the observed velocities of runaway stars (10s - 100s km s−1^{-1}) are consistent with this scenario. (2) Star formation is an inherently inefficient process, and much of the potential in young star clusters remains in the form of gas. Supernovae can in principle expel this gas, which would drastically alter the dynamics of the cluster by unbinding the stars from the potential. However, recent numerical simulations, and observational evidence that gas-free clusters are observed to be bound, suggest that the effects of supernova explosions on the dynamics of star clusters are likely to be minimal.Comment: 16 pages, to appear in the 'Handbook of Supernovae', eds. Paul Murdin and Athem Alsabti. This version replaces an earlier version that contained several typo

    Two-Fermion Bound States within the Bethe-Salpeter Approach

    Full text link
    To solve the spinor-spinor Bethe-Salpeter equation in Euclidean space we propose a novel method related to the use of hyperspherical harmonics. We suggest an appropriate extension to form a new basis of spin-angular harmonics that is suitable for a representation of the vertex functions. We present a numerical algorithm to solve the Bethe-Salpeter equation and investigate in detail the properties of the solution for the scalar, pseudoscalar and vector meson exchange kernels including the stability of bound states. We also compare our results to the non relativistic ones and to the results given by light front dynamics.Comment: 32 pages, XIII Tables, 8 figure

    Fundamental Concepts

    Full text link
    This chapter briefly discusses the fundamental properties of black holes in general relativity, the discovery of astrophysical black holes and their main astronomical observations, how X-ray and γ\gamma-ray facilities can study these objects, and ends with a list of open problems and future developments in the field.Comment: 14 pages, 4 figures. To appear in "Tutorial Guide to X-ray and Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer Singapore, 2020). v2: fixed some typos and updated some parts. arXiv admin note: text overlap with arXiv:1711.1025

    Potential Economic Viability of Two Proposed Rifapentine-Based Regimens for Treatment of Latent Tuberculosis Infection

    Get PDF
    Rationale: Rifapentine-based regimens for treating latent tuberculosis infection (LTBI) are being considered for future clinical trials, but even if they prove effective, high drug costs may limit their economic viability. Objectives: To inform clinical trial design by estimating the potential costs and effectiveness of rifapentine-based regimens for treatment of latent tuberculosis infection (LTBI). Methods: We used a Markov model to estimate cost and societal benefits for three regimens for treating LTBI: Isoniazid/ rifapentine daily for one month, isoniazid/rifapentine weekly for three months (self-administered and directly-observed), and isoniazid daily for nine months; a strategy of ‘‘no treatment’ ’ used for comparison. Costs, quality-adjusted life-years gained, and instances of active tuberculosis averted were calculated for all arms. Results: Both daily isoniazid/rifapentine for one month and weekly isoniazid/rifapentine for three months were less expensive and more effective than other strategies under a wide variety of clinically plausibly parameter estimates. Daily isoniazid/rifapentine for one month was the least expensive and most effective regimen. Conclusions: Daily isoniazid/rifapentine for one month and weekly isoniazid/rifapentine for three months should be studied in a large-scale clinical trial for efficacy. Because both regimens performed well even if their efficacy is somewhat reduced
    • …
    corecore